Math 4650 Topic 3 - Infinite Series

Def: Suppose we have series
$$(a_n)_{n=1}^{\infty}$$

and we want to make an infinite series
out of it.
We define the partial sums by
 $s_k = a_1 + a_2 + a_3 + \dots + a_k$
for $k > 1$.
That is,
 $s_1 = a_1$
 $s_2 = a_1 + a_2 + a_3$
 $s_4 = a_1 + a_2 + a_3 + a_4$
and so on.
If lim S_k exists and equals L, then
 $k \rightarrow \infty$ we say that the series $\sum_{n=1}^{\infty} a_n$ converges
we say that $\sum_{n=1}^{\infty} a_n = L$.
If lim S_k does not exist then we say
that $\sum_{n=1}^{\infty} a_n$ diverges.
Note: The series con start at other numbers
other that $n=1$, such as $\sum_{n=3}^{\infty} a_n = a_3 + a_4 + a_5 + \dots$

• •

In that case just the starting point of
$$S_k$$
.
For example, for above we could do
 $S_3 = a_3$, $S_4 = a_3 + a_4$, $S_5 = a_3 + a_4 + a_5$,...

Ex: Consider
$$\sum_{n=0}^{\infty} (\frac{1}{2})^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

Let's calculate some partial sums.
 $k = S_{k} = 1 + \frac{1}{2} + \frac{1}{2^{k}} + \frac{2$

We will need this result about requences.

Ex: (Geometric series)
We are interested in the series
$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \cdots$$

 $h = 0$

Note that

$$S_{k}(1-r) = (1+r+r^{2}+...+r^{k})(1-r)$$

 $= 1+r+r^{2}+...+r^{k}$
 $-r-r^{2}-...-r^{k}-r^{k+1}$
 $= 1-r^{k+1}$

Thus,

$$\begin{aligned}
\frac{1-r^{k+1}}{1-r} \\
\frac{1-r}{1-r} \\
\end{aligned}$$
Thus, if $|r| < |$ then

$$\begin{aligned}
\frac{1-r^{k+1}}{1-r} &= \frac{1-0}{1-r} = \frac{1}{1-r} \\
\end{aligned}$$

Therefore, if
$$|r| < 1$$
, then
 $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$

$$\frac{E_{X}}{\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n} = \frac{1}{1-\frac{1}{2}} = \frac{1}{\left(\frac{1}{2}\right)} = 2$$

$$\Gamma = \frac{1}{2}, |r| < 1$$

$$E_{X:} \text{ Consider the series}$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + \cdots$$
We can use partial fractions to get
$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\lim_{n \to \infty} \frac{1}{1} = \frac{1}{n(n+1)} = \sum_{n=0}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n+1}\right)$$

$$\lim_{n \to \infty} \frac{1}{1} = \sum_{n=0}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n+1}\right)$$

and

$$s_1 = \frac{1}{1} - \frac{1}{2} = (-\frac{1}{2})$$

 $s_2 = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) = (-\frac{1}{3})$
 $s_3 = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{3}) = (-\frac{1}{3})$
In general for $k \ge 1$ we get

$$S_{k} = \left| -\frac{1}{k+1} \right|$$
Thus,

$$\lim_{k \to \infty} S_{k} = \left| -D \right| = \left| \frac{1}{k \to \infty} \right|$$
Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \left| \frac{1}{n + 1} \right|$$
This series is called a "Itelescoping series"
herause of how the terms cancel
because of how the terms cancel
each other out in the partial sums.

Theorem: (Divergence Test)
If
$$\Xi a_n$$
 converges, then $\lim_{n \to \infty} a_n = 0$.
Thus, if $\lim_{n \to \infty} a_n \neq 0$, then Ξa_n diverges
Proof:
Suppose Ξa_n converges to L.
Then $\lim_{k \to \infty} S_k = L$.
Since
 $a_n = (a_1 + a_2 + \dots + a_n) - (a_n + a_2 + \dots + a_{n-1})$
 $= S_n - S_{n-1}$
We get that
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = L - L = 0$
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = U - L = 0$

 $Ex: \sum_{n=1}^{\infty} \overline{n+1} = \overline{z+3} + \overline{y+5} = \frac{1}{1+\sqrt{n}} = \frac{1}{1+\sqrt{n}}$ diverges because $\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+\sqrt{n}} = \frac{1}{1+\sqrt{n}} = 1 \neq 0$

EX: The harmonic series is the series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots$$
Note that $\lim_{n \to \infty} \frac{1}{n} = 0$.
Note that $\lim_{n \to \infty} \frac{1}{n} = 0$.
So we can't use the divergence test.
However, it turns out that this series will diverge.
Let's consider the partial sums
 $S_{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{16}$
In order for $\lim_{k \to \infty} S_{k}$ to exist we would need
that (S_{k}) is a Cauchy sequence.
We will show this is not the case.
If $m > n_{j}$ then
 $S_{m} - S_{n} = (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{m}) - (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{m})$
 $= \frac{1}{m} + \frac{1}{m} + \dots + \frac{1}{m}$
 $= \frac{m - n}{m}$
 $= 1 - \frac{n}{m}$

In particular, if
$$m = 2n$$
 and $n \ge 3$ then
 $S_{2n} - S_n = 1 - \frac{1}{n} > \frac{1}{2}$
This implies that $(S_k)_{k=1}^{\infty}$ is not Cauchy.
Why?
If (S_k) was cauchy then there would
 $e_{xist} N \ge 3$ where if $m, n \ge N_j$ then
 $|S_m - S_n| < \frac{1}{2}$
But picking $n \ge N \ge 3$ and $m = 2n \ge N$
But picking $n \ge N \ge 3$ and $m = 2n \ge N$
 Mc get $|S_m - S_n| = |S_{2n} - S_n| > \frac{1}{2}$.
 Mc get $|S_m - S_n| = |S_{2n} - S_n| > \frac{1}{2}$.
Thus, (S_k) diverges and so does $\sum_{n=1}^{n-1}$.

$$\frac{E \times (p - series)}{\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text{ converges if } p > 1.}$$

$$\frac{p_{1}}{p_{1}} \sum_{n=1}^{\infty} \frac{1}{n^{p}} \sum_{n=1}^{\infty} \frac{1}{p_{1}} \sum_{n=1}^{\infty}$$

Set
$$k_3 = 2^3 - 1 = 7$$
.
Then,
 $s_{k_3} = s_7 = \frac{1}{1^p} + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right)$
 $< 1 + \frac{1}{2^{p-1}} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p}$
 $= 1 + \frac{1}{2^{p-1}} + \frac{1}{4^{p-1}}$
 $= 1 + \frac{1}{2^{p-1}} + \left(\frac{1}{2^{p-1}}\right)^2$
In general, if $k_j = 2^3 - 1$ and $r = \frac{1}{2^{p-1}}$, then
 $0 < S_{k_j} < 1 + \frac{1}{2^{p-1}} + \left(\frac{1}{2^{p-1}}\right)^2 + \dots + \left(\frac{1}{2^{p-1}}\right)^{J-1}$
 $= 1 + r + r^2 + \dots + r^{J-1}$
 $= \frac{1 - r^3}{1 - r}$
Thus, we have a bounded subsequence $(S_{k_j})_{j=1}^{\infty}$
As described above we get that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.

Note: It can be shown that

$$\sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6} \qquad \sum_{n=1}^{\infty} \frac{1}{n^{3}} \approx 1.2020569..., \quad \text{(Apergis)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{4}}{6} \qquad \sum_{n=1}^{\infty} \frac{1}{n^{5}} \approx 1.0369278...$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{6}} = \frac{\pi^{6}}{945} \qquad \sum_{n=1}^{\infty} \frac{1}{n^{5}} \approx 1.0369278...$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{6}} = \frac{\pi^{6}}{945} \qquad \text{(Apergis)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{6}} = \frac{\pi^{6}}{16} = \frac{\pi^{6}}{16} \qquad \text{(Apergis)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{6}} = \frac{\pi^{6}}{16} \qquad \text{(Apergis)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{6}} = \frac{\pi^{6}}{16} \qquad \text{(Apergis)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{6}} =$$

Theorem: (Comparison test) Suppose that $0 \le a_n \le b_n$ for all $n \ge k$ for some fixed k > 0. Then: ① If $\ge b_n$ converges, then $\ge a_n$ converges. ② If $\ge a_n$ diverges, then $\ge b_n$ diverges.

$$\begin{aligned} | \pm_{m} - \pm_{n} | &= |a_{1} + a_{2} + \dots + a_{m} - a_{1} - a_{2} - \dots - a_{n}| \\ &= |a_{n+1} + a_{n+2} + \dots + a_{m}| \\ &= a_{n+1} + a_{n+2} + \dots + a_{m} \\ &\leq b_{n+1} + b_{n+2} + \dots + b_{m} \\ &= |b_{n+1} + b_{n+2} + \dots + b_{m}| \\ &= |b_{1} + b_{2} + \dots + b_{m} - b_{1} - b_{2} - \dots - b_{n}| \\ &= |s_{m} - s_{n}| \\ &\leq \varepsilon \\ Thus, (\pm_{k}) is a Cauchy sequence. \\ So, (\pm_{k}) Converges and so does Zan. \\ \end{aligned}$$

Ex: (p-series)
Suppose 0
If n E N, then n^p < n.
So, if n E N, then
$$\frac{1}{n} < \frac{1}{n^{p}}$$
.
Thus, since $\sum_{n=1}^{p} \frac{1}{n^{p}}$ diverges, by the comparison
test we know $\sum_{n=1}^{p} \frac{1}{n^{p}}$ diverges.

Ex: Since
$$0 < \frac{1}{n^2 + n} < \frac{1}{n^2}$$
 for all $n \in \mathbb{N}$
and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by the comparison
test we get that $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges.

Theorem: (Alternating series test)
Let
$$(a_n)$$
 be a monotonically decreasing
sequence of positive real numbers with $\lim_{n \to \infty} a_n = 0$.
Then, the alternating series
 $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - \dots$

(unverges.

Since

$$S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k})$$

We get that $(S_{2k})_{k=1}^{\infty}$ is a monotonically
increasing sequence.

$$A|S_{0},$$

$$S_{2k} = \alpha_{1} - (\alpha_{2} - \alpha_{3}) - (\alpha_{4} - \alpha_{5}) - \dots - (\alpha_{2k-2} - \alpha_{2k-1}) - \alpha_{2k}$$

$$\leq \alpha_{1}$$

Thus, since
$$(S_{2k})_{k=1}^{\infty}$$
 is monotonically
increasing and bounded from above,
by the monotone convergence theorem
lim $S_{2k} = L$ for some $L \in \mathbb{R}$.
 $k \neq \infty$
We now show that $\lim_{k \neq \infty} S_k = L$.
Let $\xi \neq 0$
Since $\lim_{k \neq \infty} S_{2k} = L$ there exists $N_1 \neq 0$ where
 $\lim_{k \neq \infty} S_{2k} = L$ there exists $N_1 \neq 0$ where
 $\lim_{k \neq \infty} S_{2k} = L$ there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, there exists $N_2 \neq 0$ where
 $\lim_{k \neq \infty} \alpha_k = 0$, $\sum_{k \neq \infty} \alpha_{2k+1} = 0$, $\sum_{k \neq \infty} \alpha_{2k+1} = 0$,
 $\sum_{k \neq \infty} \alpha_k = 0$, $\sum_{k \neq \infty} \alpha_{2k+1} = 0$, $\sum_{k \neq \infty} \alpha_{2k+1} = 0$.

Thus, for nZ max ENI, N2 } we get both Iszn-LI< E

and Iszn+1-LI<E

This implies that
$$|S_k - L| < \varepsilon$$
 for
all m = Zmax ξ N, N2 }.
So, $(S_k)_{k=1}^{\infty}$ converges to L.

Ex: Since
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 and $0 < \frac{1}{n+1} < \frac{1}{n}$
for all $n \ge 1$ we get that the
alternating harmonic series
 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{3} - \cdots$

Converges.